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The Barenblatt theory of cohesive stresses at crack tips is used to investigate the effect of the relaxation of 
craze stresses at crack tips on the rate of craze extension. The craze stresses are equated to the cohesive 
stresses of the Barenblatt theory. The cancellation by the cohesive/craze stress of the singularity that 
would exist at the crack tip in their absence is assumed to hold for an extending craze. With this 
assumption, relaxation of the craze stresses produces craze extension, an effect which has been called 
'relaxation controlled growth' by Williams and Marshall. A general equation relating the rate of change 
of craze length to the rate of change of stress intensity factor (K/) and the rate of change of the craze 
stress is derived. It is argued from this equation that uniform crack growth with a constant craze length 
can occur only at constant K I. Using plausibility arguments for the behaviour of the craze stress with time 
and position in the craze, and assuming a generalized Dugdale model, differential equations for the rate 
of craze extension with no crack growth are derived for the constant load and constant K 1cases. These 
equations relate the rate of change of craze length to the craze stress at the tip of the crack. Assuming a 
specific form for the time dependence of this stress, the equation for the constant K~case is solved to yield 
an expression for the craze length as a function of time. 
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I N T R O D U C T I O N  

At the tips of cracks in most glassy and semi-crystalline 
polymers under stress, there exists a craze ~. Under the 
influence of stress, with the chemical nature of the 
environment being an important contributing factor, the 
craze may increase in length (i.e., extend), the crack may 
grow in length, or both. In this paper we will be concerned 
with the effect of the viscoelastic nature of the craze 
material on the rate of craze extension and of crack 
growth. We have in mind a situation in which a body 
containing a pre-existing crack is subjected to an external 
load and a small craze is formed at the tip of the crack. The 
load may or may r, ot be sufficient to cause crack growth. 
We ask now the viscoelastic nature of the craze material 
influences the rate of craze extension. We also consider 
crack growth under the special circumstance in which the 
crack grows uniformly with constant length of craze at its 
tip. However, we do not specifically consider the criterion 
(such as critical crack opening displacement) for crack 
growth, nor do we consider craze extension in the absence 
of cracks. These modes of craze extension and crack 
growth have been termed 'relaxation controlled growth' 
by Williams and Marshall z. 

Most theories of the effects of viscoelasticity on the 
growth of cracks a-  8 have not specifically included the 
viscoelastic properties of the craze, although the 
viscoelastic nature of the craze material on crack growth 
rate has been recognized 5'6. However, possibly because 
these theoretical treatments have been more concerned 
with cracks propagating in rubbery polymers a-6 where 
crazing is relatively unimportant compared to glassy or 
crystalline polymers, the viscoelasticity was considered to 
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reside in the continuum outside the craze region. In these 
treatments, the craze itself serves only to provide a closing 
stress at the tip of the crack over a region called the failure 
zone by Schapery 4 and Knauss 6. This closing stress is 
considered to be constant with position along the 
craze 4'7'8 or as having one region within the craze in 
which the stress changes linearly, plus a region in which it 
is constant6: In all cases, the stress is considered to be 
constant in time during the short time necessary for the 
crack to propagate through the craze region at the tip of 
the growing crack. For the minute crazes or failure zones 
that exist at the tip of cracks in elastomers this is an 
adequate approximation. 

The viscoelastic nature of the craze material and the 
fact that this nature can effect both the growth of cracks 
and the growth of crazes independent of crack growth has 
been widely recognized 2'4'~°'~1. Thus, Kramer  9 and 
Lauterwasser and Kramer  12 have argued that in the 
growth of crazes in the presence of crazing liquids, creep of 
the craze material is important,  while under dry 
conditions, drawing of the craze material from the 
substrate is important and creep relatively unimportant. 
yerheulpen-Heymans  and Bauwens ~° considering the 
growth of crazes in the absence of cracks have argued that 
the craze far from the craze tip undergoes creep at a stress 
that is constant with position. Using a theoretical analysis 
based on the formalism of Muskhelishvili 13 and a 
nonlinear model of the craze material based upon that of 
Haward and Thackray 14, they were able to derive an 
expression for the kinetics of craze growth in the absence 
of cracks that fit their experimental results. 

Most important for our purposes is the work of 
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Williams and Marshall 2. Reasoning from the results of the 
Dugdale model ~5, which was developed for yielding in 
metals and postulates a constant stress in the yielded zone 
at the crack tip, they recognized that a reduction of this 
stress (equated to the stress in the craze) would cause craze 
growth. The reason for this, as we shall later show in detail 
for the more general Barenblatt model 16, is that this yield 
(or craze) stress acts as a closure stress at the tip of the 
crack and hence cancels the stress singularity that would 
otherwise exist there. The magnitude of the stress 
determines the length of the yielded (or crazed) zone, the 
higher the stress the shorter the zone. Hence, as the stress 
in a newly formed craze at the tip of a stationary crack 
decreases due to relaxation effects, the craze zone 
increases in length in order to cancel the stress singularity. 
Similarly, for a crack moving with uniform velocity and 
with a craze zone of constant length at its tip, the velocity 
of the crack for a given applied stress intensity factor is 
determined by the relaxation of the stress in the craze from 
the tip of the craze to its trailing edge (i.e., the tip of the 
crack). Williams and Marshall 2 termed this 'relaxation 
controlled growth'. By using the results of the Dugdale 
modeP 5 but without rederiving the results for the time 
dependent case, and by assuming that the stress in the 
craze zone would decrease in time in the same manner as 
the relaxation modulus of the uncrazed material, 
Williams and Marshall were able to calculate average 
values of the craze stress. From this they developed craze 
and crack growth laws that showed impressive agreement 
with experiments. 

It is the purpose of this paper to derive more general 
expressions for the rate of craze and crack growth than 
were derived by Williams and Marshall 2, but using their 
concept of relaxation controlled growth. We shall derive 
these general expressions by starting with Barenblatt 's ~6 
theory of cohesive stresses at crack tips. We then apply 
these results with a specific empirical expression for the 
craze stress as a function of time. 

DISCUSSION 

7he model 

In our model we shall take the craze to be a viscoelastic 
material in an elastic continuum. The experiments of 
Kambour  and Kopp  ~v and Hoare and HulP 8 show that 
relative to unyielded polymer, the craze material appears 
to show greater time dependence. It should be noted that 
Williams and Marshall 2 considered the continuum to be 
viscoelastic as well, but since we shall be interested in 
developing a more rigorous derivation than theirs, taking 
into account the viscoelasticity of the continuum would 
add a complexity that would obscure the main lines of the 
argument. 

As our fundamental basis we shall use the Barenblatt L6 
theory of cohesive stresses, identifying the craze stress 
with Barenblatt 's cohesive stress. Hence, by the term 
'craze stress' we mean the stress provided by the craze on 
the surface of a crack at its tip. Because we are using the 
Barenblatt formulation, we can only be concerned with 
small crazes at the tip of cracks, in which the craze length 
is very small with respect to the crack length and the 
dimensions of the specimen. Hence our treatment is valid 
only for small-scale yielding. 

Because we will need the results we will begin with a 
brief review of the Barenblatt theory. More detailed 

reviews are given by Goodier ~9, Bilby and Eshelby 2 0, and 
Schapery 4 whose notation we largely follow. 

A diagram of the crack tip situation is shown in Figure 
1. We consider a centre crack in an infinite medium. The 
origin of coordinates is at the centre of the crack. At the tip 
of the crack is the craze. The length of the crack is 2c and 
the distance from the origin to the tip of the craze is a. 
With respect to an origin at the tip of the craze, we follow 
Schapery 4 and use coordinates ~ and ¢1, as shown, 
denoting positions within the craze/crack and ~ in the 
uncrazed continuum. The length of the craze is c~, which is 
a function of time, and c ~ = a - c .  The craze provides a 
closing stress o(~,t) on the surfaces of the craze zone. The 
surfaces of the crack are stress free. We shall only be 
concerned with stresses along the axis of crack/craze, i.e., 
y = 0. The external loads provide a stress of. at infinity in 
the y direction. 

It should be noted that Barenblatt does not make the 
distinction made here between crack and craze. In his 
formulation, the crack extends to what we have called the 
craze tip, and his cohesive stress, which we equate with the 
craze stress, serves to close the tip of the crack. In the 
absence of a cohesive/craze stress, the crack is imagined to 
extend to position x = a, i.e. the tip of craze, and a stress 
singularity exists at this point. This definition problem 
was recognized by Schapery '~ who called what we have 
called the 'craze tip' the 'crack tip'. In our subsequent 
discussion we shall follow Figure 1. 

Barenblatt's approach to the problem is to calculate the 
stresses and displacements for a crack subject to external 
loads alone, i.e., without the cohesive stresses. Then a 
calculation of the stresses and displacements is carried out 
for a crack subject to the cohesive stresses alone, i.e., 
without the external loads. The required solution is then 
the sum of the solution to these two sets of boundary 
conditions. The more detailed calculation carried out by 
Goodier ~9 involving the sum of solutions to three 
boundary value problems is unnecessary for our 
purposes, and we shall only give the results necessary to 
the subsequent exposition. 

For the crack without cohesive stresses, the results for 
o and o ° and displacements v ° along the x the stresses Ox .,. 

axis (y=0)  but very near the crack tip, are 

0 0 K1 ~1>0 (1) 
~. =ox =(2n~1)1. 2, 

' - - 0 L  

C 

Figure 1 Schematic representation of  the conf igurat ion at the 
crack t ip.  The crack extends to the posit ion c. The region between 
c and a is occupied by the craze which provides closing stresses as 
shown. The broken line represents the displacement in the absence 
of the craze stresses 
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v°=C~[K1/(2n)i/2]~ 1/2, ~>0 (2) 

In these equations, K 1 is the stress intensity factor for 
mode I opening, and is a function of the external applied 
stresses and the geometry of the situation. It represents the 
action of the external stress. The quantity Ce is the 
compliance in plane strain and is given by'* 

C~ = 4(1 - v2)/e (3) 

where v is Poisson's ratio and E is the Young's modulus of 
the material in the continuum (not the craze material). 

The cohesive/craze stresses a, acting alone in the region 
cause stresses a~, and a~ to the right of the craze tip and 

displacements v c to the left of it given by 

1 f , . .~1/2d~ 
. . . .  j a~:,t) ~1 >o 

0 

(4) 

¢t Ce /I , .  J ( 1 / 2  + ~ 1 / 2  

v~(O = - ~ J  a~((,t)ln ~ ~/~ d( , ~ > 0 

0 
(5) 

where a~(~,t) is the distribution of cohesive/craze stresses 
which we have specifically indicated to be a function of 
time as well as position in the zone ~ where they act, and 
is a variable of integration. Very near the crack tip, i.e., 
~t/ct << 1, equation (4) becomes'* 

~t 

c c l 
a x - % -  n(~]-)1/2 ~+a~(O), ~ : > 0  (6) 

0 

The stresses in the continuum to the right of the tip of the 
craze under the combined action of the external stresses 
and the cohesive stresses are obtained by adding 
equations (1) and (6) (or (4)). A comparison of equations (1) 
and (6) shows that the resulting stresses in the continuum 
will be finite only if 

~t 

K , ( ) f  
0 

(7) 

As pointed out by Schapery, a more complete 
representation is obtained by adding equations (1) and (4) 
and using equation (7) to obtain 

¢t 

;~1/2 t" ac(~,t)d~ 

0 

(8) 

The displacements are obtained by adding equations (2) 
and (5) and using equation (7). This gives 

I)(~):~f(~c,~){2'~/~) 1/2'1~1/2Jt-~1/2}- ,n ~ ~7: ~dC , 

0 

~>o 
(9) 

Equations (7), (8), and (9) (and their viscoelastic 
analogues) are the equations that relate the stresses and 
displacements to the external stresses, the cohesive 
stresses, and the stress-strain properties of the elastic 
continuum. The stress-strain properties of the material 
providing the cohesive stresses nowhere appear explicitly. 
The stresses provided by it serve only to close the edges of 
the crack (equation (5)) from where they would have been 
in their absence (equation (2)). This point is important 
because we identify the material in the cohesive zone with 
the craze and we will later discuss the effects of the 
viscoelastic properties of the craze material. 

For our purposes, the important equation is equation 
(7). This equation expresses the relationship between 
ac(~,t ) and • such that the singularity at the craze tip be 
cancelled. The higher ac(~,t), the shorter a and conversely. 
Thus, if after the formation of the craze the stress in it were 
to decrease by relaxation, then the length ct must increase 
in order to maintain the absence of a stress singularity at 
the craze tip. 

An inspection of the displacement equations (2), (5), and 
(9), however, indicates that the craze material is not 
subject to either a simple stress-relaxation (constant 
elongation) or a simple creep (constant stress) situation. 
At any point x in the craze, as the stress in the craze 
decreases, the surfaces of the craze at that point will begin 
moving toward their stress-free position as given by 
equation (2). This in turn will provide more elongation for 
the craze material at that point, tending to retard the 
decrease of stress. The situation is analogous to carrying 
out a stress relaxation experiment on a 'soft' machine, i.e., 
one in which the displacement increases as the load 
decreases. As pointed out by Barenblatt 16 and Bilby and 
Eshelby 2° for the elastic case, a full formulation of this 
problem leads to intl'actable integral equations; 
viscoelasticity further complicates the matter. For the 
present, it seems reasonable to conclude that because of 
the nature of the mechanical environment in which it finds 
itself, the rate of relaxation of the stress within the craze 
will be slower than it would be in a pure stress relaxation 
experiment. 

Growth of the craze 
We may now use equation (7) to develop an expression 

for the rate of growth of the craze at the tip of a crack. We 
shall not be concerned with any microscopic mechanisms 
of craze initiation as formulated by Argon 21, Gent 22, and 
others. Rather, we assume that at some time t = 0 a craze 
has been established at the crack tip, and we ask ourselves 
how the time dependence of the craze stress determines 
the rate of growth of the craze. This model implies that the 
criterion for craze growth is a stress criterion. At the tip of 
the initial crack (before craze growth) and at the tip of the 
craze (during subsequent growth) the stress ar must reach 
some value a o in order for the craze to grow. Because of 
the triaxial nature of the stress under the plane-strain 
conditions at these points, this seems a reasonable implicit 
assumption. Also, because of this, no induction time is 
predicted, which again seems to be reasonable for crazes 
at crack tips. Differentiating equation (7) with respect to 
time we obtain the craze/crack growth law for relaxation 
controlled growth: 

ct 

o'(o~,t) d~ /-fn-dK' f~a(¢,t) de 
~1/2 d t - x / ~ t - -  j ~ ~,:2 (10) 

0 
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where by a(~,t) we mean the stress at time t at the trailing 
edge of the craze, namely the tip of the crack. 

Equation (10) is the basic equation governing craze 
growth resulting from the imposition of the Barenblatt 
condition that the craze stress cancels the singularity that 
would otherwise occur at the craze tip. For a crazing stress 
that is constant in time the equation gives the expected 
result that the craze grows only if K~ is changed. For a 
constant K~, the craze will grow at a rate dependent on 
the length of the craze, the stress on the craze at the 
trailing edge, and the integral over the crazed region of the 
rate of change of the craze stress. Since this is expected 
generally to be negative, the equation predicts that growth 
rate will be positive. On the basis of this model, the craze 
will not grow at constant K~ if the craze stress is 
independent of time, a point which has been made by 
Kramer 9. 

In this latter respect, we first examine the situation in 
which the crack advances with uniform velocity and with 
constant craze length, i.e., b = h = u > 0 ,  where u is the 
constant velocity. As has been pointed out by 
McCartney ~, under these conditions, the displacement, 
and hence the stress, will be a function only of x - ut. But 
since under these conditions ~ = u t - x ,  the derivative 
(which is at constant ~) within the integral in equation (12) 
is zero, and hence crack propagation at constant velocity 
and at constant craze length can only occur if K~ is a 
constant, as has already been pointed out by McCartney 7 
in a different context. The length of the craze will depend 
upon the value of K~ through equation (7), as will the 
crack velocity and the value of the craze stress, but 
without assuming some criterion such as critical crack 
opening displacemenff for crack advance, not much more 
can be said about the relationship between K~ and crack 
velocity from this formulation. 

Turning now to the problem of craze extension without 
crack growth (i.e., ~ = 0, ~ 4 0) we note from equation (10) 
that the actual calculation of craze extension requires the 
knowledge of the time dependence of the craze stress for 
all points within the craze for the general loading 
situation. As already mentioned, this is a formidable 
problem which can be formulated in terms of intractable 
integral equations. However, a reasonable approach may 
be attempted using some physical reasoning. To pursue 
this, following Schapery 4 let us first transform equation 
(12) by the substitution q=¢/~,  which normalizes the 
craze length. Then we consider two separate situations: 
constant load and constant K~, although we will mainly be 
interested in the latter case. For a constant load providing 
a stress a~. in the y direction at infinity, from the 
Barenblatt theory we have for the centre-crack case 
considered here: 

(11) 

~(o) 
"C 

6 

1 

dt L 2~/~a(a,t) c + ~  = -  (gt ~f/2 (12) 
0 

For the case of constant K~, we obtain 

1 

~r(~,t) d~ _ f On dr/ 
dt ~t ~/~/2 

(13) 

It will be recognized that equation (12) reduces to 
equation (13) if: 

(14) 

The Barenblatt theory is applicable when a/c<< 1, and 
since a(ct,t) is not expected to be a great deal smaller than 
n~, we shall henceforth consider the constant K t case 
only. 

We now consider qualitatively the dependence of the 
craze stress as a function of time and r/ as the craze 
extends. Similar considerations have already been used by 
Wnuk 8 for the dependence of the craze stress on 
relaxation in the surrounding continuum. The situation is 
depicted schematically in Figure 2a. By hypothesis, the 
stress at the leading edge of the craze at all times is the 
value of the craze initiation stress n 0. At time t = 0  we 
assume some stress distribution which may be a constant 
or similar to any of those determined by Lauterwasser and 
Kramer 12. As time proceeds, those points furthest 
removed from the craze tip will be 'older' and hence the 

t=O 

t= l  

We then obtain from equation (10): 

a 

t=O 
d (o) 

© 

Figure 2 (a) Schematic representation of  the behaviour w i th  t ime 
over the normalized craze length of the stresses in extending craze. 
By hypothesis the stress at the craze t ip  is a constant. (b) Same as 

(a) but  w i th  the c r a z e  stress at t = 0 constant w i th  posit ion. This is 
a generalized Dugdale model 
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stress will be lower, and in Figure 2a we have attempted to 
show this schematically for times greater than t--0. 
Without knowledge of the relationship between t /and t 
equation (13) cannot be solved analytically, although it 
could be solved numerically if the time dependence of the 
stress were known. 

In view of the above discussion, let us make the simplest 
approximation possible for the form of a(~q,t). Let us 
assume that: 

a(~rl,t) = f (tlt/z) (15) 

in which z is some normalizing parameter in the nature of 
a relaxation time, but should not be confused with the 
relaxation time for the relaxation modulus of the material. 
Clearly we must have: 

a0 =f(0)  (16) 

and hence, for t = 0, a(ocrl,O ) is a constant independent of t/. 
This, then, is the Dugdale model~ 5 with relaxation, and is 
shown schematically in Figure 2b. At the tip of the craze 
(q = 0) the stress is always a o. At the trailing edge of the 
craze (t/= 1), the stress is given by: 

a(a,t) =f(t/z) (17) 

With these definitions we may now evaluate the integral in 
equation (13). Denoting the integral by I, we substitute 
equation (15) into it and obtain: 

1 

0 

(18) 

where the prime denotes differentiation with respect to the 
argument. This may now be integrated by parts to obtain: 

1 

l [ ¢~3 i2F( t ,  l i Z . .  " l f t '~ l i2~ j ( r# t l r ) ,  ] 

0 

(19) 

Now, it can be seen immediately from the definition of r/ 
and equation (7) that the integral on the RHS of equation 

u -  

(19) is equal to x/TKd~ll2. Substituting into equation (19) 

we obtain: 

1F l / i t  \x/2 q 
(20) 

This may now be substituted into equation (13) to give: 

a(~,t) da _ I~I(~1/2Ki_ ] 
dt t L 2 \ 2 ]  ~,/2 .(a,t) (21) 

which, upon collecting terms, gives a final differential 
equation for the rate of growth of the craze: 

1 d~ 1 t/2 1 f~  Ks 
~u2 dt F?a =~42ta(ct,t ) (22) 

The analogous equation for the constant load case is: 

of  craze extension: E. Passaglia 

1 d~F1 z~ a~ / T  "] o~ 1/2 

dtL 2 M   SMO4 J + t 

1 /'~ O "  / - -  
- _  _ v - - . x / c + ~  

t 2,,/2 trtc~,t) 
(23) 

While equation (23) is a nonlinear equation that cannot be 
integrated easily, equation (22) is linear and can be 
integrated immediately to give: 

t 

vi12tl/2__l E K  ~ dt 

0 

(24) 

This is our equation for relaxation controlled growth at 
constant K~. It involves three basic assumptions: (1) the 
stress in the craze acts like the Barenblatt cohesive stresses 
to cancel the singularity at the tip of the craze, (2) the 
criterion for crazing is a value a0 of the craze stress at the 
craze tip, and (3) the craze stress behaves within the craze 
according to equation (15). The last of these is considered 
to be the most drastic of the assumptions. It is applicable 
only so long as the craze is very short in comparison to the 
crack length. 

To go beyond this we need to know the behaviour with 
time of the stress of the trailing edge of the craze. Note that 
so far we have said nothing about the mechanical 
behaviour of the craze material. In particular, the material 
need not be a linear viscoelastic material, but can be 
nonlinear as well. To proceed further, we now assume that 
the stress behaves in a manner similar to a linear 
viscoelastic material. To the knowledge of this author, 
aside from the determination of stress-strain curves by 
Kambour and Kopp ~v and Hoare and Hull is, no data 
have been published on the viscoelastic nature of the craze 
material. Comparing the values of craze stress obtained 
by various authors 23-26 with the modulus figures given 
by Kambour  and Kopp and Kramer 9, elongations of two 
to ten per cent would be obtained for the craze material, if 
linear. At the lower range of stresses the material might be 
considered linear, at the upper ranges it is clearly not. 
Kambour and Kopp have further shown that on the first 
cycle of a stress-strain curve, ~55~o of the strain is 
nonrecoverable, and subsequent stress-strain cycles show 
curves that are not drastically nonlinear. Thus there is 
some reason to hope that, at least for low craze stresses, 
linear viscoelasticity may be approximately applicable, 
and that the stress-bearing extension of the craze may be 
only a small fraction of the total displacement. 

With these remarks we follow Williams and Marshall 2 
and assume a power law for the relaxation of the stress in 
the craze material. As previously described, because of the 
mechanical environment of the craze there is no a priori 
justification for assuming that the exponent in this power 
law is the same as that of the relaxation modulus. 
Nevertheless, since we wish to have a stress that is finite at 
t = 0, we assume for the stress: 

a(~,t)-  ao 
1 + (t/z) m (25) 

which is essentially the reciprocal of the compliance 
function used by Schapery 4. For times long compared to 
z, this equation reduces to the commonly used power law 
for relaxation modulus z. 
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The behaviour of  the craze length wi th  t ime at the t ip o f  
a stat ionary crack according to equat ion (26). The  craze stress at 
the t ip o f  the crack is assumed to behave according to equat ion (25) 

This may be substituted into equation (24) and 
integrated immediately to give: 

?c K 2 [  - {t~" l ~2 
~ = 8  c~ [_ 1 + \ ~ J  2m+ l J  (26) 

g g¢'2/-- 2 At time t =0  the initial length of the craze is ~-,, /% 

which is the expected result for a constant stress over the 
craze zone as in the Dugdale model for small-scale 
yielding. As time increases, the craze extends at a 
decreasing rate. A plot is given in Figure 3 for three values 
of re. For m = 1/2 the curves become linear in t for values of 
time long with respect to z. 

Except for the fact that these curves do not start at zero 
length (the initial craze length may be difficult to 
determine experimentally, see later) these curves show a 
general resemblance to the results of Marshall, Culver, 
and Williams 27 and Narisawa and Kondo 28. For 
comparison with the results of this theory, both these 
investigations were complicated by the presence of 
solvent. The former authors measured craze growth in 
PMMA in methanol. They ascribed the time dependence 
of their results to the flow of methanol through the craze, 
an explanation which was supported by the dependence of 
the craze length on the square root of the time for the early 
portions of craze growth. The latter authors investigated 
craze growth in both PMMA and polycarbonate with 
craze initiation and growth hastened by kerosene. In 
PMMA they found a square root dependence on time, but 
in polycarbonate the dependence was on the 0.24 power of 
the time, a result which is difficult to ascribe to solvent 
diffusion effects. However, these authors also found a 
linear dependence of craze length on K in contrast to the 
results presented here. The K dependence of the Marshall, 
Culver, and Williams results appears to be somewhere 
between the first and second power. These results indicate 
that in the presence of solvent, flow of the solvent through 
the craze is the principal rate controlling process, but 
relaxation of the craze stress may also have some bearing 
on the rate of craze extension. 

For times long compared to r, the length of the craze is 
given approximately by: 

l K2?yo 
-~ (27) - 4(m + ½)2 ~ a0~\~ -] 

which, except for the numerical factor and the presence of 
z, is identical to the expression developed by Williams and 
Marshall 2 by less rigorous means, and used by them to 
analyse the growth kinetics of crazes at crack tips in the 
absence of solvent in a number of polymers with 
impressive success. 

CONCLUSION 

Starting with the Barenblatt solution for the stresses at the 
tip of a crack which is closed by the cohesive stresses at the 
crack tip, and assuming that the Barenblatt hypothesis 
that the cohesive stresses cancel the singularity at the 
craze tip during crack and craze extension, a general 
expression (equation (10)) has been derived for the rate of 
change of craze length. The craze stress is equated to the 
cohesive stress, as was done by Schapery* and craze 
extension is caused by the relaxation of the stress in the 
craze. Thus, equation (10) relates the rate of change of 
craze length to the integral of the time rate of change of 
craze stress in the craze zone. The equation is applicable 
only so long as the craze is very short compared to the 
crack length. This mode of craze growth was termed 
'relaxation controlled growth' by Williams and Marshall 2 
but no general expression for the growth was given. 

It is argued that the mechanical situation for the craze 
at a crack tip corresponds to neither pure creep (constant 
stress) nor pure relaxation (constant extension), and hence 
the rate of change of craze stress is not easily relatable to 
the relaxation or creep functions for the craze material. 
Nevertheless, a physically plausible form (equation (15)) 
for the dependence of craze stress on location within the 
craze and time is hypothesized. Using this expression, 
equation (10) is solved for constant load and for constant 
stress intensity factor, and differential equations (equations 
(22) and (23)) for the length of the craze as a function of 
time are derived. The differential equation for constant K~ 
is solved to give an equation (equation (24)) for the length 
of the craze as an integral over time of the craze stress at 
the trailing edge of the craze (the tip of the crack). Then, 
giving a qualitative justification for the use of linear 
viscoelasticity, and using a power law similar to that 
previously used 2"5 a specific expression for the craze 
length at a crack tip is derived. The form of this expression 
shows a similarity to the results of craze growth 
experiments in PMMA in methanol 27 and kerosene 28 
and polycarbonate in kerosene 2s. While for comparison 
with the present results these experiments are complicated 
by the need to take into account solvent flow, the 
comparison indicates that relaxation controlled growth 
may be a contributing factor. At longer times, the 
expression reduces (within a numerical factor) to one 
previously derived by less rigorous means 2 and shown to 
agree with experiment very well 2. 

In this formulation, no induction time is predicted. 
Since the concern here is with crazes at crack tips, an 
induction time is not expected. The predictions given here 
for the time dependence of the length of crazes at crack 
tips are widely different from the familiar linear increase of 
length with the logarithm of time 1°'11 which occurs in the 
absence of macroscopic cracks. However, even in that 
case the viscoelastic nature of the craze material is 
important in determining the kinetics of craze growth 1°. 

A more serious deficiency is the lack of a threshold 
stress intensity factor before crazing begins, as observed 
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by Marshall, Culver, and Williams 27, Narisawa and 
Kondo 2a, and Israel, Thomas, and Gerberich 29. Given 
the presence of a microscopically sharp crack, it seems 
implicit from a stress criterion for crazing that no 
threshold value of K would exist. If a microscopically 
sharp crack can be hypothesized in these experiments, 
then the presence of a threshold value of K implies a 
minimum length of craze. That is, a craze, being a 
collection of fibrils and voids, cannot exist as a separate 
'phase' below a given size. From the data in ref. 29 this 
minimum length appears to be of the order of 5 
micrometres. Clearly, the theory presented in this paper 
has not addressed the problem of the minimum length of 
craze, or what is equivalent, the existence of a threshold 
stress intensity. We have attempted to answer the far 
simpler question of, given a craze at a crack tip, how is its 
growth determined by the relaxation of the stress in the 
craze? In answering this question we believe we have put 
the work of Williams and Marshall 2, who first addressed 
this question, on a somewhat firmer footing. 
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